

HSC Mathematics Assessment Task 3 June 2011

- Time allowed: 60 minutes plus 5 minutes reading time
- Answer each question on your own paper showing all necessary working.
- Start each question on a new page.
- Marks may not be awarded for untidy or poorly set out work.

Topic	Mark
Trigonometric Functions	/25
Applications of Calculus to the Physical World	/30

TOTAL

/55

TRIGONOMETRIC FUNCTIONS

Quest	uestion 1.		
a)	Expres	ss $\frac{2\pi}{3}$ radians in degrees.	1
b)	The angle subtended at the centre of a circle of radius 8 cm is 1.2 radia Find:		
	i)	the length of the arc cut off by this angle	1
	ii)	the area of the sector formed.	1
c)	Differentiate with respect to x:		
	i)	$\sin 3x$	1
	ii)	tan 🗷	1
	iii)	$x\cos x$	2
	iv)	$\sin^2 x$	2
d)	Find:		
,	i)	$\int \sin x dx$	1
	ii)	$\int \cos \left(2x + \frac{\pi}{3}\right) dx$	1
	iii)	$\int \sec 2x \tan 2x dx$	1
	iv)	$\int \frac{\sin x}{1 + \cos x} dx$	2

Question 2. START A NEW PAGE

- a) For the function $y = 3\sin 2x$, find:
 - i) its amplitude

1

ii) its period

1

b) Solve $2\sin^2 x = \sin x$ for $0 \le x \le 2\pi$

2

c) i) On the same diagram, draw a neat sketch of $y = \tan \pi x$ and y = 1 - x for $0 \le x \le 2$

3

ii) Hence determine the number of solutions to the equation $\tan \pi x = 1 - x$ for $0 \le x \le 2$.

1

d) The area under the curve $y = \sec x$, for $0 \le x \le \frac{\pi}{4}$ is rotated about the x axis. What is the volume of the solid of revolution generated?

3

APPLICATIONS OF CALCULUS TO THE PHYSICAL WORLD

Question 3. START A NEW PAGE

ii)

- a) A stone dropped into a still pond causes circular ripples on the surface. The area of disturbed water, t seconds after the stone hits the surface of the water is given by $A = 4\pi t^2$
- 1
- Find an expression to represent the rate of change of the area of disturbed water.

Find, in terms of π , the rate of change of the area of the disturbed

- 1
- b) A particle moves on the x axis with velocity after t seconds given by
 - i) Find its position as a function of t.

2

ii) When is the particle at rest?

water after 1 second.

v = 6 - 2t m/s. Initially it is at x=4.

1

iii) Find the total distance travelled in the first 7 seconds.

2

- Water enters a container, initially empty, so that, after t minutes the volume VL of water in it is increasing at a rate of $\frac{12t}{t^2+4}$ L/min.
 - i) Show that $V = 6 \ln \left(\frac{t^2 + 4}{4} \right)$
 - ii) Find, to the nearest minute, the time taken for the container to hold 17 L.
- d) The population of a colony of insects at time t years is given by $P = 40e^{\frac{1}{2}t}.$
 - i) Show that the growth is exponential. 1
 - ii) What is the initial population?
 - iii) What is the population after 10 years?
 - iv) What is the rate of increase of the population after 10 years?

Question 4. START A NEW PAGE

a) A particle P is moving along the x axis. Its position at time t seconds is given by

$$x = 2\sin t - t , \qquad t \ge 0.$$

- i) Find an expression for the velocity of the particle. 1
- ii) In what direction is the particle moving at t = 0?
- iii) Determine when the particle first comes to rest.
- iv) When is the acceleration negative for $0 \le t \le 2\pi$?

b)

The above graph shows the velocity, v m/s, of a particle moving on a straight line, for $0 \le t \le 9$.

State all the times, or intervals of time, for which

- i) the particle is stationary
 ii) the particle is moving in the positive direction
 iii) the acceleration is positive
 iv) the particle is slowing down.
 1
- The mass, M g, of a radioactive element present in a substance after t years is given by $M = M_0 e^{-kt}$, where M_0 is the initial mass and k is a constant. The half-life period of the element is 100 years.
 - i) Show that $k = \frac{\ln 2}{100}$
 - ii) How long will it take for 9 g to reduce to 2 g?
 - iii) What percentage of an original mass will be present after 32 years? 2

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax \ dx = \frac{1}{a} \sin ax \ , \ a \neq 0$$

$$\int \sin ax \ dx = -\frac{1}{a} \cos ax \ , \ a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax , \ a \neq 0$$

$$\int \sec ax \tan ax \ dx = \frac{1}{a} \sec ax \ , \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} , a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}) , x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = ln(x + \sqrt{x^2 + a^2})$$

NOTE:
$$ln x = log_e x, x > 0$$

2011 HSC zu Task 3 =1×8,×1.5 = 38.4 cm - In (1+ con) + c y = 12 vo>x y'=-K. SMK + COSK $\int \sin x \, dx = -\cos x + c$ (CO (2x+1) dn = 1 Si (2x+1) +C See 2n tarrida = Esecon + c

27 = T25~ x - 1=0,T,277 X=I e 3 so TI Sec'ndr = TI - Tx0 = Tu3 · Questron 3 $A = 4\pi t^{2}$ (i) t=1, $dA = 8\pi$ u^2/s V= 6-2t $x = bt - t^{2} + c$ t = 0 - 0 + c: x = 6t - t + 4 ii) v=0 for at vest At 3 sees particle is at rest. Dist t=0 n=4t=7 x=-3When t=3, x=13Distance travelled: p 13-4=9 d= 2×9 + 7 = 25 metres

 $\frac{dV}{dt} = \frac{12t}{t+4}$ $V = \int \frac{12t}{t+4} dt$ V = 6 ln (++4) + C Initally teg V=0 0 = 6 ln 4 + c c = -6 ln 4 V= 6h (t+4) -6h 4. = 6 ln /t +4 as required. P=40C df = 40 x 2 e 2 = 1 P P= 400 = 40

- 40 e 6-52 dP = 40x + e $= \frac{1}{2} \left(40 \times 6 \right)$ Questron 4 r = asint -V = 2 cost t=0 V=2 --moving to the right, 2 cost is regaline for ZTT

b) i) Stationary tzo, 5, 9 ii) 0<t<5 iii) Gredret of V graph is positive. oct c2 and 7 ct c9 IV) V + i in opposite directions 2 ct c5 cd 7 ct c9 M= Moe M= M= t= In/9 - (- 100

year Mo P 100 x 32 111 M =0.80/ M. ary men is 80.1) after 32 years, Present 80.1